
Tetrahedron Letters,Vo1.26,No.23,pp 2809-2812,1985 0040-4039/85 $3.00 + .OO 
Printed in Great Britain 01985 Pergamon Press Ltd. 

1,4-DIACETOXY-@-JACTAMS. REACTIONS WITH NUCLEOPHILES 

P.A. van Elburg,a D.N. Reinhoudt, 
a* 

S. Harkemab and G.J. van Hummel 
b 

Laboratories of Organic Chemistrya and Chemical Physics, 
b 
Twente University 

of Technology, Enschede, The Netherlands 

Abstract. S-Lactam 1 reacts with hetero nucleophiles under ring cleavage to give 2,2-dimethyl-3- 
oximinobutanoic esters 6 and 7. N-hydroxyazetidine 2, - -- the precursor of 8-lactam 1, is prepared by 
a new method. 

As part of our work on four-membered cyclic nitrones we have recently reported that l-hydroxy- 

asetidine 5 can be oxidized with lead tetraacetate to 1,4-diacetoxy-3,3,4-trimethyl-2-azetidinone 

($ - 4-Acetoxy-2-azetidinones have been widely used in S-lactam chemistry2 and 1-hydroxy-2- 

azetidinones have recently received much attention after the discovery of the biologically active 

monocyclic S-lactams. 3 

Previously we have shown that the ester function in N,N-diethyl-1-(acetoxy)-4-methyl-3-phenyl- -- 
2-asetidinone-4-carboxamide4 can be saponified with sodium methoxide in diethyl ether without 

ring opening of the &lactam. Therefore we have investigated reactions of &lactam 1 with two - 

equivalents of nucleophile as a possible route to 4-substituted l-hydroxy-2-asetidinones. 

1-Hydroxyazetidines can be synthesized by reductive cyclization of c-benzyl-B_tosyloxy ox- 

imes. 1 The disadvantage of this method is the possibility of S-elimination of the leaving group 

and therefore we have developed an alternative method. Recently Sammes and Smith reported the 

synthesis of N-substituted asetidines by cyclisation of y-hydroxyamines. 5 We found that the same - 

type of reaction can be used for the cyclization of hydroxylamine derivatives (Scheme I). Reac- 

tion of 3,3-dimethyl-4-hydroxy-2-butanone' with 0-benzylhydroxylamine afforded the oxime 2 in a 

yield of 79% [bp 86-88 'C/O.1 mm Hg; ni2 1.5148; -13 
- 

C-NMR (CDC13) 6 163.1 (s, C=N), 70.1 (t, 

CH20H); MS: (M - OH>+ 204.138 (CIBHIsNO)]. Reduction of oxime 2 with NaCNBHB in acetic acid af- - 
forded the hydroxylamine 2 in a yield of 79% [bp 98-100 'C/O.07 mm Hg; G2 1.5022; 'H-NMR (CDC13) 

6 4.48 (bs, 2H, NH and OH), 3.38 (s, 2H, CH20H); 13C-NMR (CDC13) 6 72.6 (t, CH20H); MS: M+ 

223.156 (C13H21N02)]. Th e cyclization of compound 3 to 1-benzyloxyazetidine 4 was achieved in a - - 
yield of 75% by the addition of carbon tetrabromide and triethylamine to a solution of triphenyl- 

phosphine and hydroxylamine 3 in acetonitrile, - followed by further reaction at room temperature 

for 4h. Catalytic debensylation of the azetidine 4 and subsequent oxidation of the resulting l- 

hydroxyasetidine 5 to the 1,4-diacetoxy-2-asetidinone 1 were carried out as described previous- - 

ly.1 
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(Fig. I). From this figure it can be concluded 

data: C7HlBNOB; monoclinic; space group P21/c, 

S = 94.47 (l)O, Z = 8. Structure determination 

ite monochromator) with intensity greater than 

The structure was solved by direct methods and 

Reaction of 1,4-diacetoxy-S-lactam 1 with two equivalents of sodium methoxide, at 0 'C in - 
diethyl ether, afforded 3-hydroximino-2,2-dimethylbutanoic acid methyl ester (6a)7 (Scheme II) - 
[yield 47%; mp 59-60 "C (petroleum ether bp 40-60 "C); lH-NMR (CDClB) 6 8.70 (bs, lH, OH), 3.70 

(8, 3H, OCH3); 13C-NMR (CDClB) 6 175.3 (s, C=O), 159.3 (8, C=N); IR (KBr) 1740 (C=O), 1670 (C=N) 

cm -l; MS: M+ 159.090 (C7Hl$iOB)]. The structure and stereochemistry were proven by X-ray analysis 

that compound 6a has the E-configuration. Crystal - - 

a = 7.521 (l), b = 20.122 (Z), c = 11.529 (1) A, 

based on 2631 reflections (MO Ka radiation, graph- 

the standard deviation from counting statistics. 

refined with full matrix least squares to a final 

R-factor of 4.5X." Parameters refined: scale factor, extinction parameter, positional and ther- 

ma1 (isotropic for hydrogen atoms, anisotropic for others) parameters. 8b All hydrogen atoms have 

been found from a difference Fourier synthesis. 
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Similar reactions with two equivalents of sodium ethoxide and sodium thioethoxide gave the oximes 

6b and 6c in yields of 47% and 52%, respectively.6 Reaction of &lactam 1 with sodium phenoxides -- - 

and sodium thiophenoxides in aqueous acetone (1:l) resulted in a mixture of the acylated oximes 7 

and the oximes z These compounds could not be separated but acylation of the crude product af- 

forded the oximes 7a-d (Scheme II). Compound 7c yield 34%; mp 104-105 'C (petroleum ether bp -- -7 [ 

40-60 "C); 'II-NMR (CDC13) 6 2.21 (6, 3H, 0CH3); 13C-NMR (CDC13) 6 172.9 (6, C=O>, 168.9 (8, 

COCH3), 165.8 (s, C=N); IR (KBr) 1775 (OAc), 1754 (GO), 1640 (C=N) cm-'; MS: M+ 319.175 

(C16H25N04)]; compound 7d [yield 48%; oil; - 'H-NMR (CDC13) 6 2.23 (s, 3H, COCH3); 13C-NMR (CDC13) 

6 184.1 (s, c=o), 169.0 (s, COCH3), 165.6 (6, GN); IR (NaCl) 1775 (OAc), 1700 (C=O), 1632 (C-N) 

cm -1; MS: M+ 279.091 (C1,+H17N03S)]. 

Woulfe and Miller have reported that IJ-hydroxy-O-substituted 8-lactams - 

are usually more susceptible to nucleophilic attack at the 8-lactam 

carbonyl moiety than the corresponding N-alkyl 8-lactams. 3b This in- - 
creased reactivity was also found in the activity of monobactams, 3c 

sulfactams3a and oxamaains.3b The enhanced susceptibility of 1,4-diace- 

toxy-2-azetidinone 1 to ring opening is illustrated by the difference in 

the reactivity of 8-lactam 1 and 1-acetoxy-8-lactams with sodium carbo- - 

nate in aqueous methanol. Reaction of &lactam 1 resulted in the forma- - 

tion of oxime &, while the 1-acetoxy-2-azetidinones could be saponified 

Fig.1 View of 6a 
to give the 1-hydroxy-&lactams. 

3b 
A similar ring opening of 8-lactams 

- 
as shown in Scheme II has been reported by Page and Proctor in the reac- 

tion of cephalosporines with nucleophiles. 9 

The oximes 6 can be acylated with acetyl chloride and triethylamine. Acylation of oxime 6a - - 
afforded compound 8a as an oil in quantitative yield (Scheme II) [lH-NMR (CDC13) 6 2.19 (8, 3H, - 

COCH3), 1.93 (6, 3H, CH3-C=N); 13C-NMR (CDC13) 6 174.7 (6, C=O), 169.1 (8, COCH3), 166.1 (6, 

C=N); IR (NaCl) 1795 (OAc), 1760 (GO), 1660 (C-N) cm-l; MS: M+ 170.082 (CSH15N0,,>]. Catalytic 

deacylation of oximes 7a-d and 8a with Pd/C (5%) in ethanol afforded the oximes 9a-d and &, res- -- - -- 

pectively, in high yields; oxime &: [ mp 123-125 "C (diisopropyl ether); 'H-NMR (CDC13) 6 8.20 

(bs, lH, OH), 2.26 (8, 3H, CH3-C=N); 13C-NMR (CDC13) 6 173.7 (8, C=O), 158.9 (s, C=N), 11.6 (q, 

CH3-C=N); MS: M+ 277.167 (C16H23N03)]. Besides acylation, oxime 6a could be alkylated and reacted - 

with methanesulfonyl chloride and pyridine*S03. Oxime 6a was alkylated by ethyl bromoacetate in - 
diethyl ether to give compound 8b (Scheme II) [yield 58%; oil; - 'H-NMR (CDC13) 6 4.60 and 4.58 (6, 

2H, OCH$O), 3.69 (s, 3H, OCH3); MS: M' 245.127 (C11H19N05)]. Reaction of 6a with methanesulfonyl - 
chloride afforded compound 8c [yield 88%; oil; lH-NMR (CDC13) 6 3.72 (6, 3H, 0CH3), 3.12 (s, 3H, - 

SOzCH3); IR (NaCl) 1750 (C=O), 1380 and 1200 (OSO2CH3) cm-'] (Scheme II). Oxime 6a was reacted - 
with pyridine*S03 in pyridine followed by treatment with tetrabutylammonium hydrogen sulfate to 

afford compound 8d as a thick colourless oil (Scheme II) [yield 65%; 'H-NMR (CDC13) 6 3.66 (s, - 
3H, 0CH3), 3.28 (t, J = 7.1 Hz, 8H, NCH$; "C-NMR (CDC13) 6 175.7 (s, C=O), 161.3 (6, C-N), 58.8 

(t, NCH2); IR (NaCl) 1782 (C-O) cm-']. 

The above results show that 1,4-diacetoxy-3,3,4-trimethyl-2-azetidinone (i) is much more 

susceptible to ring opening by nucleophiles than 4-acetoxy-2-asetidinones or 1-acetoxy-2-azet- 

idinones. 
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